Process development for recycling rare earth from mining and urban waste materials

ASTER conference 23rd of April 2015

Yannick MENARD BRGM / Waste and Raw Material Unit

Water, Environment and Ecotechnologies Division

Recycling targets

- > Direct recycling of pre-consumer manufacturing REE scrap/residues
- > Landfill mining of historic residues
- > Urban mining of post-consumer waste (complex multi-materials matrices)
- > Reprocessing of mining and metallurgical waste

Commercial recycling of REEs is extremely low Less than 1% of the REEs were being recycled in 2011*

*Source: Binnemans et al. / J. of Cleaner Prod. 51 (2013), 1-22

Rare earth elements: recycling opportunities*

- > Recycling is part of a threefold approach including also substitution & investment in primary mining
- > REE are imported into the EU from a very limited number of producers
- > Demand is high and steadily growing
- > Recycling of REEs from spent products or mining/metallurgical waste, could provides a secondary supply
- > However, closing the "REE loop" is a technical challenge, due to their specific uses and properties

Recycling of REEs is still at an early stage

*European parliament (2015) Recovery of Rare Earths from Electronic Wastes: An opportunity for High-Tech SMEs

éosciences pour une Terre durable

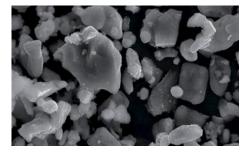
Recycling REEs: specific challenges

> Development of dedicated techniques

- To prevent from "poor" REE recycling due to routine techniques designed for primary resources (ores) and/or standard metals
- To collect, sort and pre-treat WEEE specifically. Need for techniques focused on critical raw materials and particularly REEs

> Treatment

- Few mechanical pre-treatment and sorting processes are able to liberate and separate the complex intermix of materials
- Many components containing important resources are only partially sorted into the correct fractions. This leads to high losses of critical raw materials (dissipative processes)
- After shredding, losses of REE = 100% because brittle magnets end up as fine particles attached to large steel parts in the steel industry (EAF*) and are lost (in slags) for any recovery process


REEs recovery technologies

Sources of REEs	Process	Technology readiness level	Existing at industrial level	
Lamp phosphors (Eu, Tb, Y)	Pre-processing + chemical attack of phosphors and recovery of REEs by precipitation or SX	Mature (still developing)	Yes (Solvay)	
Cathode Ray Tube phosphors (Eu)	Chemical attack and solvent extraction	Limited research (declining interest ?)	No	
Permanent Magnets (Nd, Pr Sm, Dy)	- Hydrometallurgy	Mature generally but still in lab scale	Investment project (Solvay)	
	- Gas-phase extraction -Reprocessing of alloys to magnets after H ₂ decrepitation -Biometallurgy	Lab scale	No	
		Lab scale	No	
		Lab-scale	Planned pilot in 2014	
NiMH batteries (La, Ce, Pr, Nd)	Ultra High T°C smelting and hydro-pyro-metallurgy	Mature	Yes (UMICORE & SOLVAY)	
Optical Glass (La)	Hydrometallurgy	Lab scale	No	
Glass polishing powder (Ce)	Chemical process	Lab scale	No	
Source: Binnemans et al. (2013)				

REE recycling process development: BRGM R&D projects

> Urban waste

- VALOPLUS (achieved)
 - Supported by ANR*
 - Recycling the luminescent powders used in low-energy light lamps
- EXTRADE (ongoing)
 - Supported by ANR
 - Recovery of REEs from permanent magnets in WEEE

> Mining waste

ENVIREE (ongoing)
EU-ERAMIN call

*ANR: French National research Agency

VALOPLUS Valorization of used fluorescent powders

VEOLIA

FINANCE PA

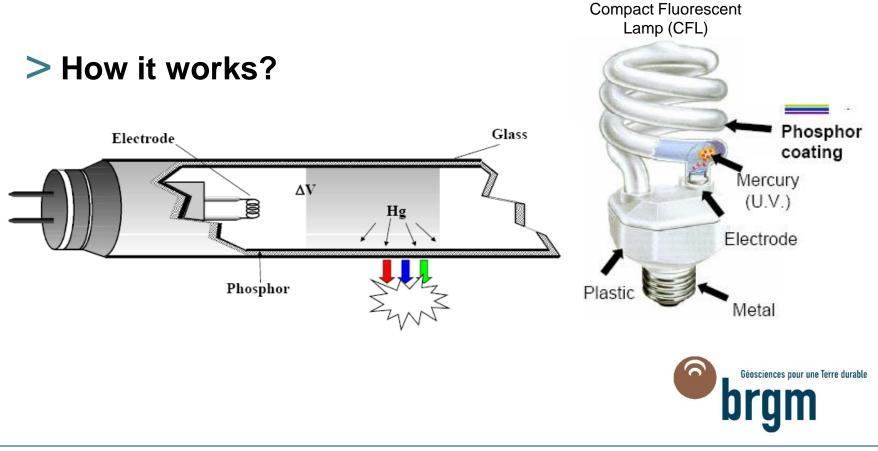
N

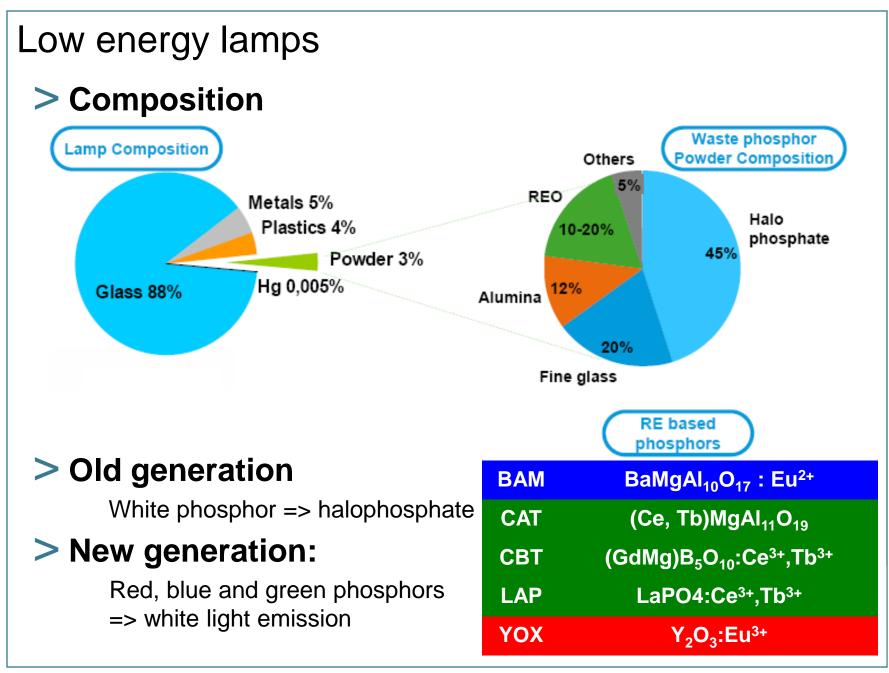
NOED BY T

-1.89 37 10/46 -625.5

asking more from chemistry®

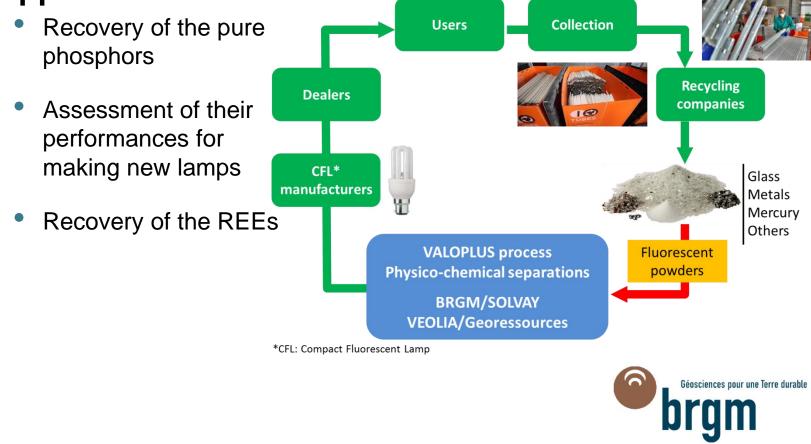
Contact point : Noureddine MENAD <u>n.menad@brgm.fr</u>

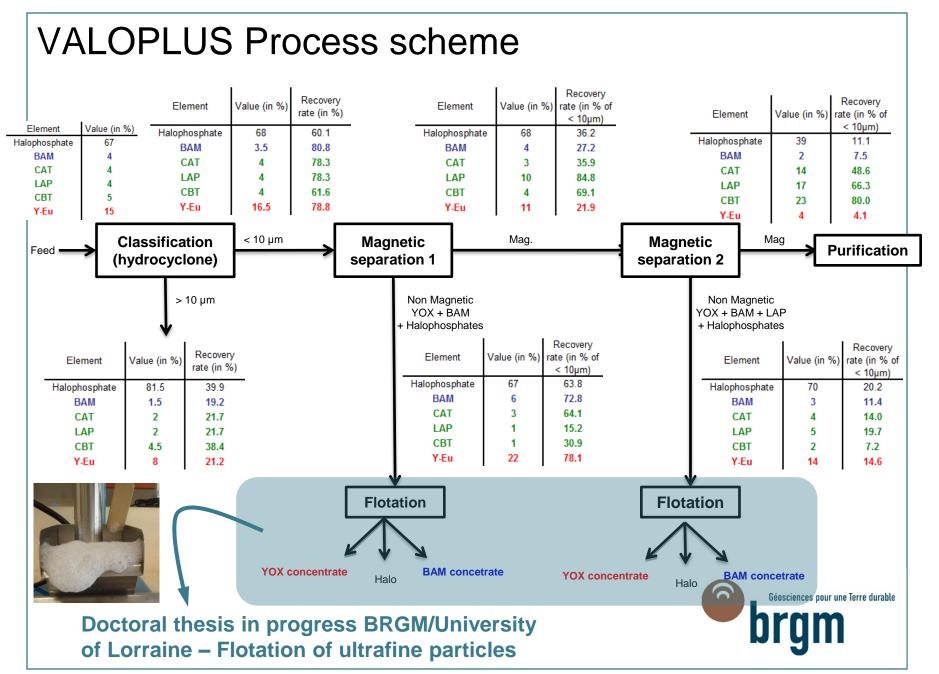

130 06 110


Géosciences pour une Terre durable

Low energy lamps

> Compared to filament lamps


- Energy consumption: 5 7 times lower
- Lifetime: 6 12 times longer



Objectives

> To develop innovative processes for the valorization of the phosphors throughout 2 approaches:

Main results

Sampling of 6 sites and characterization of the collected samples

- Phosphors are contained in the fine fraction
- Study on separation processes both on mechanisms and on experimental tests
 - Definition of a flowsheet for the separation and concentration of the phosphors/rare earth
- > Evaluation of the quality of the recovered products
 - Positive results
- Patent pending (BRGM, SOLVAY, VEOLIA, University of Lorraine – 10/07/2014)

Aimant

FINANCE PAR

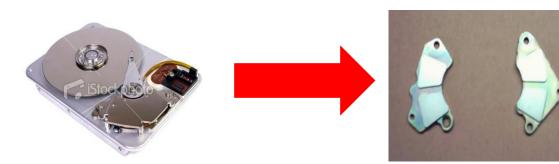
anf

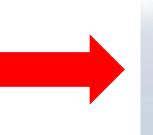
WOED BY THE

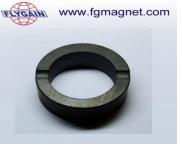
EXTRADE Recovery of REEs from permanent magnets in WEEE

t haa b

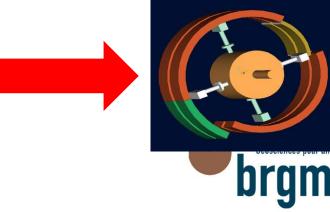
Contact point : Noureddine MENAD

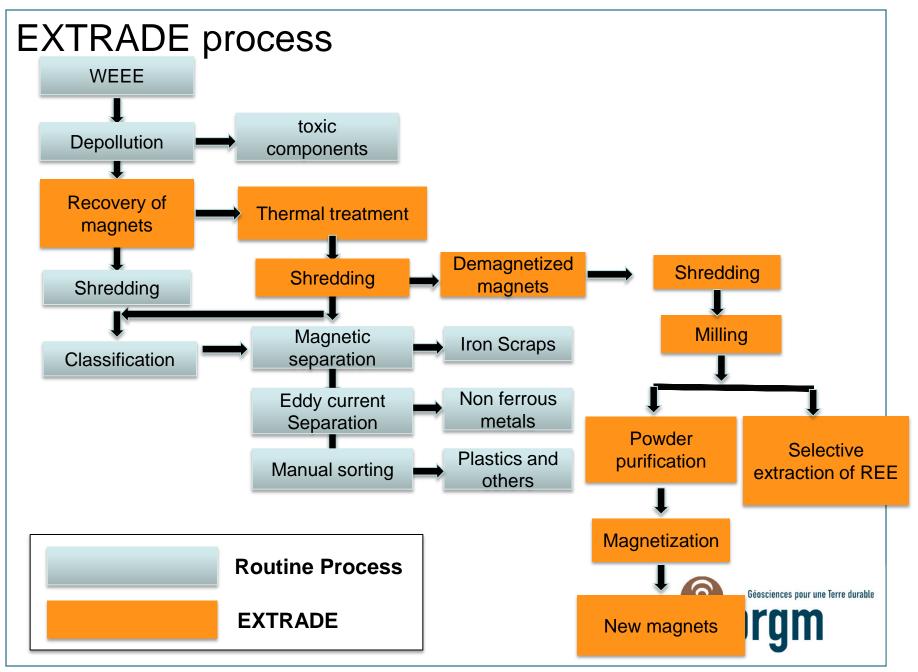

<u>n.menad@brgm.fr</u>


REEs containing components in WEEE


Hard Disk Drives

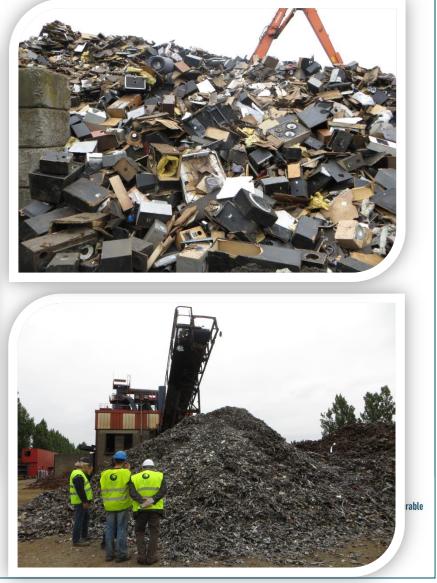
Loudspeakers





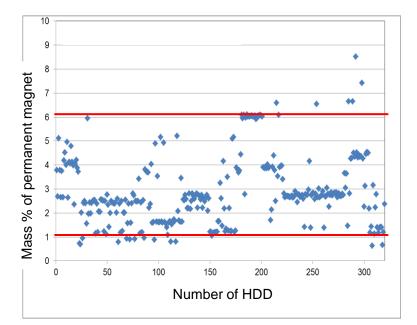
Small electric motors

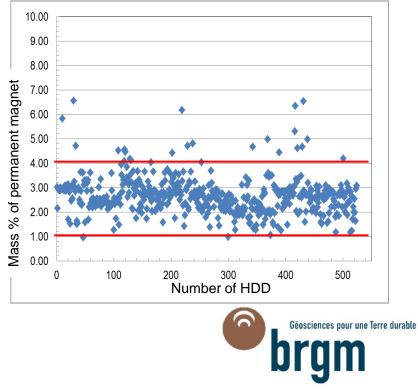
erre durable



Sampling of WEEE

Manual sorting of HDD


Loudspeaker shredding



Characterization

HDD characterization

Recycling process units

> Thermal treatment (demagnetization)

- > Electrical (high-voltage electric pulses) and mechanical treatment to recover magnets from the computer system unit
- > Route 1 elaboration of new magnets with recycled magnets powder (short loop)
 - Separation of Ni coating from NdFeB magnets
 - Mechanical treatment
 - Chemical treatment: solvo-thermal decrepitation
 - Press-molding in magnetic field / sintering / magnetization

> Route 2 – extraction of REE using innovative hydrometallurgical techniques

- Weak & cheap acid selective dissolution
- Selective recovery of REE using biomaterials

> 2 patents in progress + 2 Soleau envelopes 91

Géosciences pour une Terre durable

-1.89 3740 46 -625.5

ENVIREE (Started March 2015) ENVIronmentally friendly and efficient methods for extraction of Rare Earth Elements from secondary sources

Contact point : Yannick MENARD

y.menard@brgm.fr

Context, objectives & topics

- > Tailings and other by-products from previous mining activities can hold significant amount of critical metals including REE
- ENVIREE project is aimed at completing the picture of effective REE supply within Europe by addressing exploitation of specific secondary sources (mining and industrial waste)

> Topics

- Identification/characterization/sampling of most suitable 2nd resources
- Mineral processing
 - Enhanced comminution
 - centrifugal concentration, multi-gravity separations, magnetic sep, column flotation
- Bio-Hydro-metallurgy
 - Bioleaching, selective oxidative leaching, use of strong halide solutions
 - New technologies for recovery of REE and better utilization of natural resources
 - Separation of REE using ionic liquids
 - Selective recovery using membrane contactors (grafted polymers, inorganic resins...)

Consortium – 11 partners, 8 countries

Partner	Country	Contact person
CHALMERS	SE	Christian Ekberg (coordinator)
CEA	FR	Stéphane Bourg
BRGM	FR	Yannick Menard
AGH	PL	Katarzyna Grzesik
SAVONA PROJECT	PL	Slawomir Duda
AICU	RO	Catalin-Gabriel Borcia
IST-ID	PT	Maria Isabel Flausino de Paiva
EDM	PT	Mario Jorge Ferreira Guedes
CGS	ZA	Hendrik Coetzee
PIPAS	NO	Dag Oistein Eriksen
KIT	DE	Andreas Geist

THANK YOU FOR YOUR ATTENTION Visit our website <u>www.brgm.fr</u>

