Criticality assessment
- Silicon metal
Main uses of silicon metal in the world in 2018:

- Aluminum alloys, iron and steel (41%)
- Silicones, silanes (35%)
- Solar cells (18%)
- Other (6%)

2018 world consumption: 2.9 Mt

Trends in global consumption:

- Increasing consumption due to silicones, solar cells, and aluminum alloys. Growth is estimated at 4.5% over the next 5 years².
- Li-on batteries containing Si are being developed very actively. These batteries could achieve higher capacities.

¹ Elkem 2019
² CRU 2019
Is the substance a byproduct? No

- Silicon metal is obtained after the carboreduction of high-purity silica (quartzite, quartz pebbles, sandstone, flint). Contrary to popular belief, natural sand is not used as an input to produce silicon metal for technical reasons (e.g. circulation issues of SiO and CO gases in electric arc furnaces).

World mine production* 2018 (silicon metal only):

- Production: 3.8 Mt Si (on the basis of 2.8 tonnes of quartz to produce 1 tonne of silicon metal, with 46% of quartz being Si)
- Distribution: not precisely known. Silicon metal being mainly produced close to quartz quarries, please refer to countries where silicon metal is produced.

World metal production 2018:

- Primary production: 3.0 Mt Si
- HHI (Herfindahl-Hirschman Index) = 0.48 highly concentrated market (see beside)
- HHI 10-year variation: + 9% (HHI of 0.44 in 2008)
- Secondary production: very small

*Siliceous rock extraction falls under the quarries regulations in France

2 CRU 2018

3 Argus Media 2019

Average annual growth rate (AAGR)2,4:

- AAGR of metal production over 30 years (1987-2017): + 5.1 %
- AAGR of metal production over 10 years (2007-2017): + 5.1 %

- **Known reserves and evolution:**

 - **Not estimated accurately.** Quartz (SiO$_2$) resources are very large*. However, for technical and economical reasons, silicon metal is produced only from very high-purity quartz (> 98% SiO$_2$).

- **Geographical distribution of reserves:**

 - Not known

- **Trends in the production of silicon metal:**

 - **Increasing production** due to robust demand in the sectors of silicones, aluminum and semiconductors (solar and electronics). Other uses such as Si-anode Li-ion batteries could develop in the near future. It is remarkable that the ferrosilicon market has been decreasing since 2011 due to a decreasing demand. This was likely caused by the use of lower grades of FeSi in steels, although global steel demand increased. Short-term stress on raw materials is limited due to easily convertible FeSi capacities to Si capacities, and large overcapacities (especially in China).

 - The main obstacles to an increase in Si metal production are a high dependency of intense and continuous power supply (11-14 kWh/kg Si), increasing raw materials’ cost, and significant environmental impacts of fossil fuel use (coal, lignite, coke).

*Silicon is the most abundant element in the Earth’s crust (28%) after oxygen (49%). SiO$_2$ makes up 67% of the Earth’s crust.
3 – Substitutability

- **Substitutions:**
 - Silicon metal is **not substitutable** as a substance in most of its uses. However, more expensive technical alternatives may exist in alloys, chemistry, solar and electronic applications (e.g. CdTe and CIGS photovoltaic thin films, Ge wafers, etc.). Note some alternatives may show a significant toxicity (e.g. cadmium in CdTe photovoltaic cells)

- **Recycling rates:**

 - End-of-life recycling rate is near zero\(^4,5,6\). Some silicon may be recycled during the recycling of silicon-containing alloys, but without elemental separation (not functional recycling).

 - New silicon metal scraps and Si-kerf (cutting slurry) may be recycled during production.

 - Recycling of photovoltaic panels and electronic products is theoretically possible. However, the small quantities available in products, as well as the difficulty to separate Si parts from the other components makes it hardly profitable. Some companies (e.g. RoSi Solar) develop solutions to recycle high-purity silicon, or polysilicon, in the form of scraps or sludge.

\(^5\) Roskill 2014

\(^6\) Critical Raw Materials Alliance, https://criticalrawmaterials.org/silicon-metal/
5 – Price

- **Price determination**
 - High-purity quartz (> 98%) prices at **50-100 $/t**
 - Silicon metal price is determined between producers and consumers, directly or through traders. Argus Media publishes Chinese, European, and US American stock market prices

- **Price variation**:
 - 2018 average price (silicon metal 98.5%-99% min (4-4-1) d.p. (UE)): **€ 2107 / t**
 - 1-year variation of average price (2017-2018): +2%
 - Estimate of global market value (average price × production): **6.3 G€**

7 Argus Media
6 – Restrictions to international trade and regulations

- **Restrictions to international trade**\(^8,9\):
 - **Europe**: antidumping import tax from China (from 16.3% to 16.8%) on silicon metal of purity < 99.99%.
 - **Etats-Unis**: import tax from China (139%) on silicon metal of purity < 99.99%. Customs regulations are very dynamic in this country. For instance, strong taxes (up to 135%) on imports from Brasil, Norway, Australia and Kazakhstan were declared by the Trump administration in March 2018, before being cancelled in April 2018.
 - **Canada**: import tax from China (235%) on silicon metal of purity < 99.99%
 - Some taxes are set on photovoltaic components containing crystalline silicon coming from asian countries. In the US: taxes up to 30% on China. In Europe: taxes ranging between 27% and 65% on China, Malaysia, and Taiwan.
 - Other taxes could be set during the year, depending on the commercial relations between China and the US.

- **REACH regulation**\(^10\):
 - Silicon metal is not rated as a dangerous substance by the European Chemicals Agency (ECHA).

\(^8\) European Union regulations, https://eur-lex.europa.eu/

\(^10\) ECHA 2019
Mine* production in France:
- Mine production in 201811: 230 kt of quartz, or \textbf{106 kt Si}, dedicated to the French silicon metal production (estimated on the basis of 2.8 tonnes of quartz per tonne of silicon metal, 55 \% of quartz extracted in France, and a 46 \% Si content in quartz)
- Share of world mine production in 2018: \textbf{about 3 \%} (according to global production estimate)
- Historical production: \textbf{not known}
- Evaluated resources in Metropolitan France11,12,13: on the basis of 2018 production, quarriers estimate several decades of resources

Metal production in France:
- Metal production in 201811: \textbf{150 kt Si}
- Share of world metal production in 2018: about \textbf{5 \%}

*Siliceous rock extraction falls under the quarries law in France
11 FerroPem, 2019
12 S. Colin, Les différentes sources d’approvisionnement de la filière française du silicium métal : états des lieux et perspectives, BRGM/RP-66749-FR, 2017
13 P. Marteau, Mémento sur le silice industriel, BRGM/RP-66167-FR, 2016
French companies involved in the silicon metal supply chain (non-exhaustive list):

- Mines and quarries12,13: Imerys, CM Quartz, Decremps, Fulchiron, Sibelco
- Metallurgy: FerroPem, French subsidiary of group Ferroglobe
- Intermediate products: No company in silicon metal refining (polysilicon production)
- Recycling: RoSi Solar

French downstream industries depending on silicon metal (non-exhaustive list):

- Aluminum: Trimet, Liberty House
- Silicons: Elkem
- Solar modules: Photowatt, Voltec
- Electronics: Soitec, STMicroelectronics, Sil’Tronix

12 S. Colin, Les différentes sources d’approvisionnement de la filière française du silicium métal : états des lieux et perspectives, BRGM/RP-66749-FR, 2017
13 P. Marteau, Mémento sur le silice industrielle, BRGM/RP-66167-FR, 2016
External trade\(^{11,14}\):

- **125 kt Si** exported in 2018 by FerroPem

French trade statistics on raw and intermediate silicon products

Raw data, CIF-FOB except military equipment. Source: http://lekiosque.finances.gouv.fr

<table>
<thead>
<tr>
<th></th>
<th>2017</th>
<th>2018</th>
<th>2017-2018 variation</th>
<th>Main partners in 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Monetary</td>
<td>Physical</td>
<td>unit.val.</td>
<td>Monetary</td>
</tr>
<tr>
<td>Silicon, mass content \geq 99.99% of silicon (28046100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Export</td>
<td>883 k€</td>
<td>94 t</td>
<td>9.4 €/kg</td>
<td>439 k€</td>
</tr>
<tr>
<td>Import</td>
<td>1 948 k€</td>
<td>293 t</td>
<td>6.6 €/kg</td>
<td>3 198 k€</td>
</tr>
<tr>
<td>Balance</td>
<td>-1 065 k€</td>
<td>-199 t</td>
<td>-2 759 k€</td>
<td>-531 k€</td>
</tr>
<tr>
<td>Silicon, mass content < 99.99% de silicium (28046900)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Export</td>
<td>49 681 k€</td>
<td>28 890 t</td>
<td>1.7 €/kg</td>
<td>C</td>
</tr>
<tr>
<td>Import</td>
<td>1 515 50 k€</td>
<td>26 002 t</td>
<td>2.0 €/kg</td>
<td>C</td>
</tr>
<tr>
<td>Balance</td>
<td>-49 161 k€</td>
<td>-23 112 t</td>
<td>-2 517 k€</td>
<td></td>
</tr>
<tr>
<td>Group of confidential products. Other non-metallic mineral products not elsewhere classified (28990003), unknown silicon content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Export</td>
<td>63 279 k€</td>
<td>51 159 t</td>
<td>1.2 €/kg</td>
<td>70 037 k€</td>
</tr>
<tr>
<td>Import</td>
<td>0 k€</td>
<td>0 t</td>
<td>0.0 €/kg</td>
<td>0 k€</td>
</tr>
<tr>
<td>Balance</td>
<td>63 279 k€</td>
<td>51 159 k€</td>
<td>70 037 k€</td>
<td>55 569 k€</td>
</tr>
</tbody>
</table>

C : Confidential. Exports of code 28046900 are added to exports of code 28990003 in the combined nomenclature

Apparent consumption in 2018\(^{11,14}\)

- Production + importations – exportations = **53 kt**

Recycling:

- Collectable material: **not estimated**, but likely to be in increasing amounts with solar cells and semiconductors. PV Cycle is an eco-friendly organization to collect end-of-life solar panels
- Collected material: **very small amount**. In 2018, Véolia built the first European solar panel recycling facility in France. However, silicon is not efficiently recycled yet

\(^{11}\) FerroPem 2019

\(^{14}\) www.lekiosque.finances.gouv.fr
Silicon metal criticality

- **Economic importance**
 - Silicon metal is essential to several industrial sectors (aluminum, silicones, solar, electronics, and others)

- **Supply risks**
 - France has large resources of high-purity quartz
 - Global leader, group Ferroglobe, is the unique producer of silicon metal in France (subsidiary FerroPem)
 - Solar-grade and electronic-grade silicon metals are not produced in France

General criticality matrix

供电风险

战略重要性

- 非常低
- 低
- 中等
- 高
- 非常高

数据
1. 使用和消费
2. 世界产量和资源
3. 替代性
4. 回收
5. 价格
6. 国际贸易、法规限制
7. 法国产量和资源
8. 法国的进口、出口和消费

Criticality matrix

More information

Disclaimer
More information

- **References:**
 1. Elkem 2019
 2. CRU 2018
 3. Argus Media 2019
 5. Roskill 2014
 7. Argus Media
 10. ECHA 2019
 11. FerroPem 2019

- **See also:**
 - L’élémentarium, Société Chimique de France: www.lelementarium.fr

- **Main analyst:**
 - Antoine Boubault, BRGM

- **For any questions:**
 - Please contact BRGM, the French geological survey, on the mineral-info’s platform at: http://www.mineralinfo.fr/contact
Disclaimer

BRGM collects data from the best available sources, some of them being publicly accessible, some requiring a dedicated subscription. Although BRGM brought reasonable care and due diligence to prepare this criticality assessment, we do not accept liability for the accuracy of the data and analyses. In case of important business issues, we recommend you to ask us for a bespoke assessment that will better match your needs. In all cases, BRGM and COMES will never be responsible for the direct and indirect damages resulting from the use of the data contained in the present document.